|
|
发表于 2024-10-9 00:06:13
|
显示全部楼层
好 TG8X_AF1b_253K 这个模型的参数量大概是 800万级 高级显卡的瓶颈是保存png时的io 最后的三个Conv 就是超分辨率操作的层了 我把模型的源码简单复现了 但是单个工具使用 图片生成的效果不如3.0的融合 那个工具单用 丢失了不少高频信息 A B在一起是怎么特征融合的 如果是训练 打算用注意力机制了。那个模型作者也是抄的TecoGAN-PyTorch 原版是4倍 一层conv 2x 两层 4x 8x那就是三层 复现的时候发现少两层 然后看调试 发现分支没走进加第二层的 那么少的两层就在这了 但是作者加了一个8x 就是有三层
- TecoGAN8X_AF1b_253k@7t layers
- ==========================================================================================
- Layer (type:depth-idx) Output Shape Param #
- ==========================================================================================
- FRNet [1, 128, 128, 3] --
- ├─FNet: 1-1 [1, 2, 16, 16] --
- │ └─Sequential: 2-1 [1, 32, 8, 8] --
- │ │ └─Conv2d: 3-1 [1, 32, 16, 16] 1,760
- │ │ └─LeakyReLU: 3-2 [1, 32, 16, 16] --
- │ │ └─Conv2d: 3-3 [1, 32, 16, 16] 9,248
- │ │ └─LeakyReLU: 3-4 [1, 32, 16, 16] --
- │ │ └─MaxPool2d: 3-5 [1, 32, 8, 8] --
- │ └─Sequential: 2-2 [1, 64, 4, 4] --
- │ │ └─Conv2d: 3-6 [1, 64, 8, 8] 18,496
- │ │ └─LeakyReLU: 3-7 [1, 64, 8, 8] --
- │ │ └─Conv2d: 3-8 [1, 64, 8, 8] 36,928
- │ │ └─LeakyReLU: 3-9 [1, 64, 8, 8] --
- │ │ └─MaxPool2d: 3-10 [1, 64, 4, 4] --
- │ └─Sequential: 2-3 [1, 128, 2, 2] --
- │ │ └─Conv2d: 3-11 [1, 128, 4, 4] 73,856
- │ │ └─LeakyReLU: 3-12 [1, 128, 4, 4] --
- │ │ └─Conv2d: 3-13 [1, 128, 4, 4] 147,584
- │ │ └─LeakyReLU: 3-14 [1, 128, 4, 4] --
- │ │ └─MaxPool2d: 3-15 [1, 128, 2, 2] --
- │ └─Sequential: 2-4 [1, 256, 2, 2] --
- │ │ └─Conv2d: 3-16 [1, 256, 2, 2] 295,168
- │ │ └─LeakyReLU: 3-17 [1, 256, 2, 2] --
- │ │ └─Conv2d: 3-18 [1, 256, 2, 2] 590,080
- │ │ └─LeakyReLU: 3-19 [1, 256, 2, 2] --
- │ └─Sequential: 2-5 [1, 128, 4, 4] --
- │ │ └─Conv2d: 3-20 [1, 128, 4, 4] 295,040
- │ │ └─LeakyReLU: 3-21 [1, 128, 4, 4] --
- │ │ └─Conv2d: 3-22 [1, 128, 4, 4] 147,584
- │ │ └─LeakyReLU: 3-23 [1, 128, 4, 4] --
- │ └─Sequential: 2-6 [1, 64, 8, 8] --
- │ │ └─Conv2d: 3-24 [1, 64, 8, 8] 73,792
- │ │ └─LeakyReLU: 3-25 [1, 64, 8, 8] --
- │ │ └─Conv2d: 3-26 [1, 64, 8, 8] 36,928
- │ │ └─LeakyReLU: 3-27 [1, 64, 8, 8] --
- │ └─Sequential: 2-7 [1, 2, 16, 16] --
- │ │ └─Conv2d: 3-28 [1, 32, 16, 16] 18,464
- │ │ └─LeakyReLU: 3-29 [1, 32, 16, 16] --
- │ │ └─Conv2d: 3-30 [1, 2, 16, 16] 578
- ├─SRNet: 1-2 -- (recursive)
- │ └─BicubicUpsampler: 2-8 [1, 2, 128, 128] --
- ├─SRNet: 1-3 [1, 3, 128, 128] --
- │ └─Sequential: 2-9 [1, 128, 16, 16] --
- │ │ └─Conv2d: 3-31 [1, 128, 16, 16] 224,768
- │ │ └─ReLU: 3-32 [1, 128, 16, 16] --
- │ └─Sequential: 2-10 [1, 128, 16, 16] --
- │ │ └─ResidualBlock: 3-33 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-34 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-35 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-36 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-37 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-38 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-39 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-40 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-41 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-42 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-43 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-44 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-45 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-46 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-47 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-48 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-49 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-50 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-51 [1, 128, 16, 16] 295,168
- │ │ └─ResidualBlock: 3-52 [1, 128, 16, 16] 295,168
- │ └─Sequential: 2-11 [1, 128, 128, 128] --
- │ │ └─ConvTranspose2d: 3-53 [1, 128, 32, 32] 147,584
- │ │ └─ReLU: 3-54 [1, 128, 32, 32] --
- │ │ └─ConvTranspose2d: 3-55 [1, 128, 64, 64] 147,584
- │ │ └─ReLU: 3-56 [1, 128, 64, 64] --
- │ │ └─ConvTranspose2d: 3-57 [1, 128, 128, 128] 147,584
- │ │ └─ReLU: 3-58 [1, 128, 128, 128] --
- │ └─Conv2d: 2-12 [1, 3, 128, 128] 3,459
- │ └─BicubicUpsampler: 2-13 [1, 3, 128, 128] --
- ==========================================================================================
- Total params: 8,319,845
- Trainable params: 8,319,845
- Non-trainable params: 0
- Total mult-adds (Units.GIGABYTES): 4.83
- ==========================================================================================
- Input size (MB): 0.00
- Forward/backward pass size (MB): 33.57
- Params size (MB): 33.28
- Estimated Total Size (MB): 66.86
- ==========================================================================================
复制代码 |
|